开关电源元器件选型—保险丝
开关电源元器件选型—热敏电阻
NTC的作用
NTC是以氧化锰等为主要原料制造的精细半导体电子陶瓷元件。电阻值随温度的变化呈现非线性变化,电阻值随温度升高而降低。利用这一特性,在电路的输入端串联一个负温度系数热敏电阻增加线路的阻抗,这样就可以有效的抑制开机时产生的浪涌电压形成的浪涌电流。当电路进入稳态工作时,由于线路中持续工作电流引起的NTC发热,使得电阻器的电阻值变得很小,对线路造成的影响可以完全忽略。
NTC的选择公式
对上面的公式解释如下:
1. Rt 是热敏电阻在T1温度下的阻值;
2. Rn是热敏电阻在Tn常温下的标称阻值;
3. B是材质参数;(常用范围2000K~6000K)
4. exp是以自然数 e 为底的指数( e =2.{{71828:0}} );
5. 这里T1和Tn指的是K度即开尔文温度,K度=273.15(绝对温度)+摄氏度.
开关电源元器件选型—压敏电阻
压敏电阻的作用
1、压敏电阻是一种限压型保护器件。利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。
2、主要作用:过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等。
3、主要参数有:压敏电压、通流容量、结电容、响应时间等。
4、压敏电阻的响应时间为ns级,比空气放电管快,比TVS管(瞬间抑制二极管)稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。
选取压敏电阻的方法
压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。压敏电阻的选用,一般选择标称压敏电压V1mA和通流容量两个参数。
1、a 为电路电压波动系数,一般取值1.2.
2、Vrms 为交流输入电压有效值。
3、b 为压敏电阻误差,一般取值0.85.
4、C 为元件的老化系数,一般取值0.9.
5、√2 为交流状态下要考虑峰峰值。
6、V1mA 为压敏电阻电压实际取值近似值
7、通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过± 10%时的最大脉冲电流值。
选取压敏电阻的方法
结合前面所述,来看一下本电路中压敏电阻的型号所对应的相关参数。
开关电源元器件选型—EMI电路
X电容是指跨与L-N之间的电容器,
Y电容是指跨与L-G/N-G之间的电容器.
整流桥(桥堆)的计算
整流桥的耐压选择
整流桥的耐电流选择
5为输入电流有效值的倍数,经验值。
所选整流桥的正向管压降
所选整流桥的功率损耗计算
BUCK电容容值的计算
开关电源元器件选型—RCD钳位电路
MOS管的耐压选择:
Vdss=2*Vdcmax DS极间耐压要是两倍的直流输入最大电压
MOS管的耐电流选择:
Idrms=Iout*[1.2(Po/Vdcmin)/1-Dmax]
Idrms:MOS所通过的电流有效值
Iout:输出电流
Po:输出功率
Vdcmin:最小输入直流电压值
Dmax:最大占空比
MOS的导通损耗计算
Psw=Idrms^2*Rds
有效电流值的平方乘上MOS内阻
1)开关频率:Fsw;
2)变压器的效率:η;
3)最大占空比:Dmax;
4)输入电压范围:Vinmin,Vinmax
5)输出电压 Vout
6)输出电流Iout
7)K=0.4(DCM=1,CCM=0.3~0.5);
8)输出二极管管压降Vf
9)辅助绕组电压Vb
10)辅助绕组二极管管压降Vfb
输入功率 Pin=(Vout*Iout) η
输入电流平均值 Iin_avg=Pin/(√2*Vinmin*Dmax)
初级电感量Lp=(√2*Vinmin*Dmax)^2/2*Pin*Fsw*K
纹波电流 ⊿I= √2*Vinmin*Dmax/Lp*Fsw
再确认参数
根据设计功率和结构空间选择磁芯
选好磁芯确定磁芯材质选出ui值
确定材质找出相对温度的Bs(饱和磁通密度)一般选择60°相对的Bs.
找出Ae(磁芯实际截面面积)、Acw(磁芯总卷线截面面积)、Ve(磁芯实效体积)值
计算输入电流峰值Ipk=(Iin_avg*⊿I/2)*1.2
计算AP值 AP=Ae*Acw
计算初级圈数确认选择
NP1= (√2*Vinmin*Dmax)/ui*Fsw*Ae
NP2=LP*Ipk/Bs*Ae
NP= | NP1 if NP1>NP2
| NP2 otherwise
匝比的计算 n=[Dmax/(1-Dmax)]/Vout+Vf
次级线圈的计算 NS=NP/n
辅助绕组线圈的计算Nfb=(Vf+Vfb/Vout+Vf)*NS
反推验证Dmax
Dmax=[n*(Vout+Vf)]/[√2*Vinmin+n*(Vout+Vf)]
气隙的计算 Lg=4*3.14*10^-7*NP^2*Ae/Lp
为什么要开气隙?
反激变换器中,变压器起着电感和变压器的双重作用,因而变压器磁芯处于直流偏磁状态,为防磁饱和因此要加入气隙。
防止磁芯饱和不仅只有开气隙一种方法,另外一种是增加磁心的体积;不过通常设计时空间已经限制了磁芯的大小,所以实际设计中开气隙的方法应用的比较多;
这两种方法都可以使磁心的磁滞回线变得“扁平”,这样对于相同的直流偏压,就降低了工作磁通的密度。
自然冷却时j=1.5~4A/mm2,强迫冷风时3~5A/mm2。
在不同的频率下选取d也是不同的,在200KHz以下时,一般为4~5A/mm2,在200KHz以上时,一般为2~3A/mm2。
为了减少漏感,目前最好的、工艺最简单的绕制方法是初次级交错绕法也就是大家常说的三明治绕法。
Vout为输出电压
Np为变压器原变圈数
Ns为变压器副边圈数
Vdcmax为输入最大直流(最大交流的峰值)
120%为给二极管留的尖峰余量
Ipp为原边的峰值电流(计算变压器时计算)
Dmax为最大占空比
二极管的热损耗包括正向导通损耗、反向漏电流损耗及恢复损耗。因为选用的是肖特基二极管,反向恢复时间短和漏电流比较小,可忽略不记。
二极管的PN结对环境的热阻可以通过DATASHEET查得Rthjc=1.2°C/W
Tj=Rthjc*Vf*Id_rms+Ta
Ta为工作的环境温度
Tj为二极管工作温度理论值
Vf表示二极管的正向导通压降
Id_rms表示通过二极管的有效值电流
在拓扑电路的原型上是没有吸收回路的,实际电路中都有吸收,由此可以看出吸收是工程上的需要,不是拓扑需要。
吸收一般都是和电感有关,这个电感不是指拓扑中的感性元件,而是指诸如变压器漏感、布线杂散电感。
吸收是针对电压尖峰而言,电压尖峰从何而来?电压尖峰的本质是什么?
电压尖峰的本质是一个对结电容的dv/dt充放电过程,而dv/dt是由电感电流的瞬变(di/dt)引起的,所以,降低di/dt或者dv/dt的任何措施都可以降低电压尖峰,这就是吸收。
1、降低尖峰电压
2、缓冲尖峰电流
3、降低di/dt和dv/dt,即改善EMI品质
4、减低开关损耗,即实现某种程度的软开关。
5、提高效率。提高效率是相对而言的,若取值不合理不但不能提高效率,弄不好还可能降低效率。
1、双向吸收。一个典型的被吸收电压波形中包括上升沿、上升沿过冲、下降沿这三部分,RC吸收回路在这三各过程中都会产生吸收功率。通常情况下我们只希望对上升沿过冲实施吸收。因此这意味着RC吸收效率不高。
2、不能完全吸收。这并不是说RC吸收不能完全吸收掉上升沿过冲,只是说这样做付出的代价太大。因此RC吸收最好给定一个合适的吸收指标,不要指望它能够把尖峰完全吸收掉。
3、RC吸收是能量的单向转移,就地将吸收的能量转变为热能。尽管如此,这并不能说损耗增加了,在很多情况下,吸收电阻的发热增加了,与电路中另外某个器件的发热减少是相对应的,总效率不一定下降。设计得当的RC吸收,在降低电压尖峰的同时也有可能提高效率。
1、Buck续流二极管反压尖峰超标,就拼命的在二极管两端加RC吸收。
这个方法却是错误的。为什么?因为这个反压尖峰并不是二极管引起的,尽管表现是在这里。这时只要加强MOS管的吸收或者采取其他适当的措施,这个尖峰就会消失或者削弱。
2、副边二极管反压尖峰超标,就在这个二极管上拼命吸收。
这种方法也是错误的,原因很清楚,副边二极管反压尖峰超标都是漏感惹的祸,正确的方法是处理漏感能量。
3、反激MOS反压超标,就在MOS上拼命吸收。
这种方法也是错误的。如果是漏感尖峰,或许吸收能够解决问题。如果是反射电压引起的,吸收不但不能能够解决问题的,效率还会低得一塌糊涂,因为你改变了拓扑。
1、先不加RC,用容抗比较低的电压探头测出原始的震荡频率.此震荡是有LC 形成的,L主要是变压器次级漏感和布线的电感和输出电容, C主要是二极管结电容和变压器次级的杂散电容。
2、测出原始震荡频率后, 可以试着在二极管上面加电容,直到震荡频率变为原来的1/2.则原来震荡的C值为所加电容的1/3,知道了C就可以算R值了, R=2∏fL=1/(2∏fC)。把R加到所加C上,震荡就可以大大衰减。这时再适当调整C值的大小,直到震荡基本被抑制。
1、并非吸收越多损耗越大,适当的吸收有一个效率最高点。
2、吸收电容C的大小与吸收功率(R的损耗)呈正比关系。即:吸收功率基本上由吸收电容决定。
1、吸收电阻的阻值对吸收效果干系重大,影响明显。
2、吸收电阻的阻值对吸收功率影响不大,即:吸收功率主要由吸收电容决定。
3、当吸收电容确定后,一个适中的吸收电阻才能达到最好的吸收效果。
4、当吸收电容确定后,最好的吸收效果发生在发生最大吸收功率处。换言之,哪个电阻发热最厉害就最合适。
5、当吸收电容确定后,吸收程度对效率的影响可以忽略。
反馈回路采用最常用的TL431加光耦电路。
外围元件由ZD2、R6、R15、R17、R10、R16组成。
ZD2为43V稳压管,因电流很小,工作在反向导通区。选43V是因为TL431最大的可调节电压是36V,为了能使用这个精密可调器件,我们必须把电压降低到TL431可正常工作的范围内。
R6为保证TL431死区电流的大小,输出电压大于7.5V时TL431死区电流可以通过光耦发光二极管的导通提供,因此可以不加,低于7.5V时,R6=[Vout-(Vref-Vb)]/1mA
Vout表示输出电压;Vref表示基准电压2.5V;Vb表示管压降0.7V。
TL431中的总偏置就接近 5mA,而经验显示这 5mA 的电流可实现足够的性能,而不会牺牲待机能耗。R15=Vout/5mA.
减小光耦LED串联电阻 R15并不会改变TL431的电流,因为 TL431 的电流由初级端反馈电流 IC 施加,通过光耦合器电流传输比(CTR)反射在 LED 中。改变 R15 值会影响中带增益,而非 TL431 偏置,因为系统采用闭环形式工作。
R17、 R10、R16组成的分压器在输出电压达到目的值时。R10与R17的节点电压刚好等于431内部参考电压。
C8、C4、R19组成了431所需的回收回路补偿,以便稳定控制回路。
稳定的反馈环路对开关电源来说是非常重要的,如果没有足够的相位裕度和幅值裕度,电源的动态性能就会很差或者出现输出振荡。
TL431 是开关电源次级反馈最常用的基准和误差放大器件,其供电方式不同对它的传递函数有很大的影响,很多分析资料常常忽略这一点
1、反馈回路的保护,当电压超出设定电压值反馈回路会将信息反馈到PWM控制IC,来调节占空比限制输出电压。
2、若反馈回路失效,输出末端加稳压二极管,当输出远高出设定电压,稳压二极管反向击穿,使输出正负极形成短路,使初级启动短路保护或熔断保险保护。
限流电路由R18、U5、C17、R9、R20、R21 组成。
工作原理:R18为回路的电流检测电阻,为了降低损耗,此电阻选择时尽量的小。U5为运算放大器LM358,358内部由两个运放,我们将两个运放一个做放大器,一个做比较器,将检测电阻上的电压值放大32.4倍后与基准电压做比较。当运放值低于基准值时,比较器输出高电平(358VCC电压),当运放值高于基准电压值时,比较器输出低电平(相对于接地).
比较器的输出为低电平后,光耦和431的节点电压会经过二极管导通到地,从而改变光耦发光管的回路电流,光耦光电管根据电流的大小反馈信息到PWM芯片,PWM芯片通过反馈信息调节占空比,降低输出电压来维持输出电流的大小,以此起到限流的目的。由于占空比调节的宽度有限,过低的电压超出了变压器正常工作的频点,实际应用中会出现变压器啸叫的情况,此状况可以调节补偿环路及变压器参数可以解决
光耦全称是光电耦合器,英文名字是:optical coupler,英文缩写为OC,亦称光电隔离器,简称光耦。 光耦隔离就是采用光电耦合器进行隔离,光耦合器的结构相当于把发光二极管和光敏(三极)管封装在一起。 发光二极管把输入的电信号转换为光信号传给光敏管转换为电信号输出,由于没有直接的电气连接,这样既耦合传输了信号,又有隔离干扰的作用。
光耦合器的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。
光耦的参数都是什么含义?CTR:发光管的电流和光敏三极管的电流比的最小值CTR=IC/ IF×100% (输出电流/输入电流*100%)
隔离电压:发光管和光敏三极管的隔离电压的最小值集电极-发射极电压:集电极-发射极之间的耐压值的最小值
|Archiver|手机版|家电维修论坛
( 蜀ICP备19011473号-4 川公网安备51102502000164号 )
GMT+8, 2025-6-15 21:56 , Processed in 0.123748 second(s), 15 queries .
Powered by Discuz! X3.5
© 2001-2025 Discuz! Team.