找回密码
 请使用中文注册

手机号码,快捷登录

手机号码,快捷登录

使用高效率、高频率、低EMI DC/DC转换器降低对陶瓷电容的电源要求

2023-5-21 19:04| 发布者: 开心| 查看: 99| 评论: 0

阅读字号:

摘要: {本文由家电维修技术论坛小编收集整理资料}多层陶瓷电容器(MLCC)的价格在过去几年急剧上涨,究其原因,与汽车、工业、数据中心和电信行业使用的电源数量增加有关。陶瓷电容被用在电源输出端,用于降低输出纹波,以及控制因为高压摆率加载瞬变而导致的 ...
    {本文由家电维修技术论坛小编收集整理资料}多层陶瓷电容器(MLCC)的价格在过去几年急剧上涨,究其原因,与汽车、工业、数据中心和电信行业使用的电源数量增加有关。陶瓷电容被用在电源输出端,用于降低输出纹波,以及控制因为高压摆率加载瞬变而导致的输出电压过冲和欠冲。输入端则要求陶瓷电容进行解耦和过滤EMI,这是因为在高频率下,它具备低ESR和低ESL。 为了提高工业和汽车系统的性能,需要将数据处理速度提高几个等级,并且在微处理器、CPU、片上系统(SoC)、ASIC和FPGA上集成更多耗电器件。这些复杂的器件类型需要多条稳压电轨:一般是内核0.8 V,DDR3和LPDDR4分别1.2 V和1.1 V,外设和辅助组件分别为5 V、3.3 V和1.8 V。降压(降压型)转换器被广泛用于调节电池或直流总线提供的电源。 例如,汽车中的高级驾驶员辅助系统(ADAS)产品组合大幅提升了陶瓷电容的使用率。随着电信行业开始采用5G技术,也需要用到高性能电源,这也会显著增加陶瓷电容的使用率。内核的电源电流从几安培增加到几十安培,且严格管控电源纹波、负载瞬变过冲/欠冲和电磁干扰(EMI),这些都需要额外的电容。 例如,汽车中的高级驾驶员辅助系统(ADAS)产品组合大幅提升了陶瓷电容的使用率。随着电信行业开始采用5G技术,也需要用到高性能电源,这也会显著增加陶瓷电容的使用率。内核的电源电流从几安培增加到几十安培,且严格管控电源纹波、负载瞬变过冲/欠冲和电磁干扰(EMI),这些都需要额外的电容。 更高的电源工作(开关)频率可以降低瞬变对输出电压造成的影响,降低电容需求和整体解决方案的尺寸,但是更高的开关频率往往会导致开关损耗增加,降低整体效率。能否在先进的微处理器、CPU、SoC、ASIC和FPGA需要极高的电流时,避免这种取舍并满足瞬变要求? ADI公司的Linear™ 单芯片 Silent Switcher® 2 降压稳压器系列帮助实现紧凑的解决方案尺寸、高电流能力和高效率,更重要的是,还具备出色的EMI性能。LTC7151S单芯片降压稳压器使用Silent Switcher 2架构来简化EMI滤波器设计。谷电流模式可以降低输出电容需求。我们来看看适合SoC的20 V输入至1 V、15 A输出解决方案。 面向SoC的20 V输入、15 A解决方案 图1所示为适合SoC和CPU功率应用的1 MHz、1.0 V、15 A解决方案,其中输入一般为12 V或5 V,可能在3.1 V至20 V之间波动。只需要输入和输出电容、电感、几个小型电阻和电容即会组成完整的电源。此电路易于修改,以生成其他输出电压,例如1.8 V、1.1 V和0.85 V,一直到0.6 V。输出电轨的负回流(至 V–引脚)使得其能够对负载附近的输出电压实施远程反馈检测,最大限度降低板路径的压降导致的反馈误差。 图1所示的解决方案使用LTC7151S Silent Switcher 2稳压器,该稳压器采用高性能集成式MOSFET,以及28引脚散热增强型4 mm × 5 mm × 0.74 mm LQFN封装。通过谷电流模式实施控制。内置保护功能,以最大限度减少外部保护组件的数量。 顶部开关的最短导通时间仅为20 ns(典型值),可以在极高频率下直接降压至内核电压。热管理功能支持可靠、持续地提供高达15 A的电流、20 V的输入电压,无散热或气流,因此非常适合电信、工业、交通运输和汽车应用领域的SOC、FPGA、DSP、GPU和微处理器使用。 LTC7151S具备广泛的输入范围,可以用作一级中间转换器,支持多个下游负载点或LDO稳压器在5 V或3.3 V时达到最高15 A。 
图1.适用于SoC和CPU的1 MHz、15 A降压稳压器的原理图和效率。 使用最小的输出电容,满足严格的瞬变规格 一般来说,会扩大输出电容,以满足回路稳定性和负载瞬态响应要求。对于为处理器提供内核电压的电源,这些要求尤其严格,必须出色地控制负载瞬变过冲和欠冲。例如,在负载阶跃期间,输出电容必须介入,立即提供电流来支持负载,直到反馈回路将开关电流增高到足以接管。一般来说,可以通过在输出端安装大量多层陶瓷电容来抑制过冲和欠冲,在快速负载瞬变期间满足电荷存储要求。 另外,提高开关频率也可以改善快速回路响应,但这会增大开关损耗。 还有第三种选项:支持谷电流模式控制的稳压器可以动态改变稳压器的开关 TON和TOFF时间,以满足负载瞬变需求。如此,可以大幅降低输出电容,以满足快速瞬变时间。图2所示为LTC7151S Silent Switcher稳压器立时响应4 A至12 A负载阶跃和8 A/µs压摆率之后的结果。LTC7151S采用受控导通时间(COT)谷电流模式架构,支持开关节点在4 A至12 A负载阶跃瞬变期间压缩脉冲。在上升沿启动约1 µs之后,输出电压开始恢复,过冲和欠冲则限制在46 mV峰峰值。图2a中所示的3个100 µF陶瓷电容足以满足典型的瞬变规格要求,如图2b所示。图2c显示负载阶跃期间的典型开关波形。 
图2.(a) 这种5 V输入至1 V输出的应用在2 MHz下运行,需要最小的输出电容达到快速地响应(b)负载阶跃,以及负载阶跃期间的(c)开关波形。 3 MHz高效降压型稳压器可用于狭小空间 LTC7151S采用4 mm × 5 mm × 0.74 mm封装,其中集成了MOSFET、驱动器和热回路电容。让这些组件彼此靠近可以降低寄生效应,以便快速开关这些开关,且保持很短的死区时间。开关的反并联二极管的导通损耗也大大降低。集成式热回路解耦电容和内置补偿电路也可以帮助降低设计复杂性,最大限度减小解决方案的总体尺寸。 如前所述,顶部开关的20 ns(典型)最短间隔允许在高频率下实现极低的占空比转换,使得设计人员能够利用极高频率操作(例如3 MHz)来降低电感、输入电容和输出电容的大小和值。极为紧凑的解决方案适用于空间有限的应用,例如汽车和医疗应用领域的便携式设备或仪器仪表。使用LTC7151S时,可以不使用大体积散热组件(例如风扇和散热器),这是因为LTC7151S支持高性能功率转换,即使在极高频率下也是如此。 图3显示在3 MHz开关频率下运行的5 V至1 V解决方案。伊顿提供的小尺寸100 nH电感和3个100 µF/1210陶瓷电容一起,提供适用于FPGA和微处理器应用的纤薄紧凑型解决方案。效率曲线如图3b所示。在室温下,全负载范围内温度上升约15°C。 
图3.5 V输入至1 V/15 A,fSW = 3 MHz下的稳压器原理图和效率。 Silent Switcher 2技术帮助实现出色的EMI性能 使用15 A应用满足已经发布的EMI规范(例如CISPR 22/CISPR 32传导和辐射EMI峰值限值),可能意味着多个迭代板旋转,涉及在解决方案尺寸、总效率、可靠性和复杂性之间取舍。传统方法通过减慢开关边沿和/或降低开关频率来控制EMI。这两种方法都会产生不良的影响,例如效率下降,最短接通和关断时间增加,以及增大解决方案尺寸。复杂、大尺寸的EMI滤波器或金属屏蔽等强力EMI消除方案在所需的电路板空间、组件和装配方面增加了大量成本,并使热管理和测试复杂化。 使用15 A应用满足已经发布的EMI规范(例如CISPR 22/CISPR 32传导和辐射EMI峰值限值),可能意味着多个迭代板旋转,涉及在解决方案尺寸、总效率、可靠性和复杂性之间取舍。传统方法通过减慢开关边沿和/或降低开关频率来控制EMI。这两种方法都会产生不良的影响,例如效率下降,最短接通和关断时间增加,以及增大解决方案尺寸。复杂、大尺寸的EMI滤波器或金属屏蔽等强力EMI消除方案在所需的电路板空间、组件和装配方面增加了大量成本,并使热管理和测试复杂化。 LTC7151S前端采用简单的EMI滤波器,在EMI测试室中接受测试,通过了CISPR 22/ CISPR 32导通和辐射EMI峰值限值认证。图4显示1 MHz、1.2 V/15 A电路的原理图,图5显示吉赫兹横电磁波(GTEM)电池的辐射EMI CISPR 22的测试结果。 
图4.开关频率为1 MHz的1.2 V稳压器的原理图。 
图5.GTEM中的辐射EMI通过CISPR 22 Class B限值测试。 结论 智能电子、自动化和传感器在工业和汽车环境中的普及,提高了对电源数量和性能的要求。特别是低EMI,已成为更加重要的关键电源参数考量因素,除此以外,还包括小解决方案尺寸、高效率、热性能、稳健性和易用性等常规要求。 LTC7151S使用ADI公司Power by Linear部的Silent Switcher 2技术,尺寸紧凑,可以满足严格的EMI需求。LTC7151S支持谷电流模式控制和高频率操作,可以动态变更TON和TOFF时间,几乎立即主动支持负载瞬变,因此可以使用更小的输出电容和快速响应。具备集成MOSFET和热管理性能,可以稳定可靠地从高达20 V的输入范围持续提供高达15 A电流。  推荐阅读: 轻松快速设计开关模式电源EMI滤波器适用于微型电机驱动应用的快速反应、光学编码器反馈系统充分利用数字信号处理器上的片内FIR和IIR硬件加速器创建高性价比的多功能锂离子电池测试解决方案直流电机驱动器能量回收要采购开关么,点这里了解一下价格!                
上一篇:毫米波多通道收发电路与和差网络高密度集成技术      
下一篇:使用反射计芯片实施非接触式液位测量                  特别推荐            MP5493:电表PMIC界新来的“五好学生”氮化镓器件在D类音频功放中的应用及优势如何通过使用外部电路扩展低边电流检测并提高DRV8952的检测精度SiC MOSFET的设计挑战——如何平衡性能与可靠性集成式光学接收器如何满足床旁检测仪器的未来需求                  技术文章更多>>                    “解剖”便携式医疗设备,看看里面都有啥?              如何满足各种环境下汽车USB充电端口要求?              电感饱和与开关电源之间的密切关系,这篇文章讲透了!(下)              使用 UWB 技术的卓越汽车              中科融合刘欣:从MEMS微振镜芯片入手,全栈式解决3D机器视觉挑战                                      
                  技术白皮书下载更多>>                    车规与基于V2X的车辆协同主动避撞技术展望              数字隔离助力新能源汽车安全隔离的新挑战              汽车模块抛负载的解决方案              车用连接器的安全创新应用              Melexis Actuators Business Unit              Position / Current Sensors - Triaxis Hall                                
                        热门搜索                          钽电容              碳膜电位器              碳膜电阻              陶瓷电容              陶瓷电容              陶瓷滤波器              陶瓷谐振器              陶瓷振荡器              铁电存储器              通信广电              通讯变压器              通讯电源              通用技术              同步电机              同轴连接器              图像传感器              陀螺传感器              万用表              万用表使用              网络电容              微波              微波功率管              微波开关              微波连接器              微波器件              微波三极管              微波振荡器              微电机              微调电容              微动开关                                                                              
                            网站服务        展会资讯        关于我们        联系我们        隐私政策        版权声明        投稿信箱                  反馈意见:editor@eecnt.com            客服电话:0755-26727371            
              
        

Copyright© www.jdwx.cn
深圳市中电网络技术有限公司版权所有

电                  电器维修    
维修 电器修下载电源网电子发烧友网中电网中国工业电器网连接器矿山设备网工博士智慧农业工业路由器天工网乾坤芯电子元器件采购网亚马逊KOL聚合物锂电池工业自动化设备企业查询连接器塑料机械网农业机械中国IT产经新闻网高低温试验箱  function adsC(banner_id) {  $.ajax({    type:"get",    url:"http://www.jdwx.cn/ads/cntads",    dataType:'jsonp',    data:"banner_id="+banner_id,    jsonp:'callback',    success: function(info){}  });}            
关闭            
关闭  $(".ads-gq .close").click(function(){    $(".ads-gq").fadeOut();  });var _hmt = _hmt || [];(function() {  var hm = document.createElement("script");  hm.src = "https://hm.baidu.com/hm.js?a37b63bc47570829c94fe5476364f084";  var s = document.getElementsByTagName("script")[0];   s.parentNode.insertBefore(hm, s);})();

路过

雷人

握手

鲜花

鸡蛋

最新评论

QQ|Archiver|手机版|家电维修论坛 ( 蜀ICP备19011473号-4 川公网安备51102502000164号 )

GMT+8, 2025-4-30 22:24 , Processed in 0.119510 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

返回顶部