|

楼主 |
发表于 2010-1-2 19:45
|
显示全部楼层
本帖最后由 福建李少怡 于 2010-1-2 19:47 编辑
第八节、电网电压检测电路的基本原理;
电网电压检测电路是对电磁炉外部电网交流电压进行取样,并将取样电压送至CPU芯片进行识别控制。当电网电压低于或超出正常值时,经CPU识别后将相应做出欠压、或超压指令使电磁炉在数秒钟后自动关机保护,同时通过控制板显示出欠压代码E7或E07;及显示出超压代码E8或E08代码故障。待电网电压恢复正常后,电磁炉就会自动恢复正常。电网电压检测电路由整流二极管D9(1N4007)、D10(1N4007);取样电阻R6(240KΩ/1W)、R7(240KΩ/1W)及对地分压贴片电阻R8(7.5KΩ)组成,该取样电压经电解电容器EC1(10µF/16V)滤波后送至CPU芯片第1脚(VIN电路)进行识别控制。当电网电压检测电路出现故障时,电磁炉就自动出现欠压、或超压关机保护,还造成电磁炉开不了机。
第九节、电流检测电路的基本原理;
电流检测电路是指:电磁炉在加热工作时整机电流是通过电流互感器提供取样信号,并将该信号送至CPU芯片进行识别控制。CPU芯片时刻检测着整机电流的变化,会自动调整脉宽调控(PWM)信号使电磁炉输出功率为恒定处理,从而自动做出各种保护动作。当CPU芯片检测到同步比较电路正常的有锅脉冲数后,用0.5S至2S的时间来检测电流变化,通过电流变化的“差值”确定加热锅具的材质及大小尺寸是否符合加热标准,若整机电流过大时,CPU芯片则做无锅具处理。另外,电流检测电路常见有两种:一种是采用电流互感器;另一种采用电阻分压取样。
第十节、脉宽调控电路的基本原理;
脉宽调控电路(PWM)就是将单片机CPU芯片输出不同占空比的方波脉冲转化成相应的直流电压,其实脉宽调控电路(PWM)也可以看成是一种非常简单的“数模转换”电路。脉宽调控电路是单片机CPU芯片控制整个电磁炉工作状态唯一的通道。由电阻R23(10KΩ)、R24(51 KΩ)、R25(51 KΩ)、电容器C11(104)和电解电容器EC5(4.7µF/16V)等组成积分电路。单片机CPU输出的PWM脉冲宽度越宽,EC5的电压越高,比较器(U2D)的同相输入端对地电压也就越高。同时IGBT管导通的时间就越长。当电磁炉高压保护电路、电网电压保护电路、电流保护电路、浪涌保护电路等出现故障时,均通过脉宽调控电路(PWM)将电磁炉加热功率调节幅度减小,使IGBT管处于截止状态。
第十一节、锅具温度检测电路的基本原理;
为了防止电磁炉加热、或在无人监护下进行加热时,造成锅具出现干烧现象、及电磁炉在加热中出现异常的温升,而设计的锅具温度检测电路。该电路经负温度传感器(热敏电阻)将检测取样电压送至单片机CPU芯片(TMAIN)电路进行自动识别控制,当锅具加热温度高于220℃时, 使单片机 CPU芯片(TMAIN)电路温度检测电压上升,造成单片机CPU芯片自动关机保护。同时通过控制显示板显示出“超温E3、E03代码”。当负温度传感器(热敏电阻)、及锅具温度检测电路出现异常时,单片机CPU芯片指令自动关机保护,造成“电磁炉无法启动”。
第十二节、IGBT管温度检测电路的基本原理;
IGBT管温度检测电路是利用负温度特性热敏电阻紧贴在散热片上,热敏电阻的阻值变化间接反映了IGBT管温度的变化。经取样分电后送至单片机CPU芯片(TEMP-IGBT)电路进行识别控制。当IGBT管温度上升越高即热敏电阻阻值变的越小,检测取样电压就变的越高。反之当IGBT管温度下降的越低即热敏电阻阻值变的越大,则检测取样电压就变的越低。当IGBT温度上升至100℃以上时,温度检测取样电压就升高单片机CPU芯片立即发出超温而自动关机保护,同时通过控制板显示出超温E6、E06代码故障。待机内温度降到70℃左右,电磁炉又恢复加热。若负温度传感器(热敏电阻)、及IGBT温度检测电路异常,单片机CPU芯片自动关机保护,并通过控制板显示出E4、E04及E6、E06代码故障,迫使电磁炉无法再启动。 |
|